Isolated lung perfusion and related techniques for treatment of pulmonary metastases. Is survival really improved?

Paul E. Van Schil, MD, PhD
Department of Thoracic and Vascular Surgery
Antwerp University Hospital, Belgium

on behalf on EACTS lung perfusion working group

no disclosures
no conflicts of interest
Isolated lung perfusion and related techniques for treatment of pulmonary metastases. Is survival really improved?

- survival data: the problem
- how to improve local control?
- phase II study of ILuP
- conclusions
Isolated lung perfusion and related techniques for treatment of pulmonary metastases. Is survival really improved?

- survival data: the problem
- how to improve local control?
- phase II study of ILuP
- conclusions
Surgery for pulmonary metastases

- Pulmonary metastasectomy: what is the practice and where is the evidence for effectiveness?
 T. Treasure et al. Thorax 2014; 69:946-9

- Pulmonary metastasectomy: a call for better data collection, presentation and analysis.

- Pulmonary metastasectomy: where is the evidence?
Pulmonary metastasectomy: where is the evidence?

- no large randomized trials to prove survival benefit compared to conservative treatment
- also for thymoma, mesothelioma, even early stage lung cancer!
- N2 disease: 3 large RCT; still highly controversial

- reverse statement not proven:

 absence of evidence ≠ evidence of absence

- prospective registries (ITMIG, IASLC)

30% of all cancer patients will develop lung metastases

5-year survival rates

untreated 5 - 10%
resected 30 - 50%

selection bias ??

Surgery for pulmonary metastases

International Registry

Prognostic groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
<th>MST (mos.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>single and DFI > 35 mos.</td>
<td>61</td>
</tr>
<tr>
<td>II</td>
<td>single or DFI > 35 mos.</td>
<td>34</td>
</tr>
<tr>
<td>III</td>
<td>multiple, DFI < 36 mos.</td>
<td>24</td>
</tr>
<tr>
<td>IV</td>
<td>incomplete resection</td>
<td>14</td>
</tr>
</tbody>
</table>

Table II. Relapse after metastasectomy

<table>
<thead>
<tr>
<th>Relapse</th>
<th>Epithelial</th>
<th></th>
<th>Sarcoma</th>
<th></th>
<th>Germ cell</th>
<th></th>
<th>Melanoma</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>All sites</td>
<td>917</td>
<td>12</td>
<td>1218</td>
<td>16</td>
<td>84</td>
<td>21</td>
<td>180</td>
<td>8</td>
</tr>
<tr>
<td>Single intrathoracic</td>
<td>111</td>
<td>12</td>
<td>191</td>
<td>16</td>
<td>18</td>
<td>21</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Multiple intrathoracic</td>
<td>291</td>
<td>32</td>
<td>607</td>
<td>50</td>
<td>30</td>
<td>36</td>
<td>34</td>
<td>19</td>
</tr>
<tr>
<td>Extrathoracic</td>
<td>515</td>
<td>36</td>
<td>420</td>
<td>34</td>
<td>36</td>
<td>43</td>
<td>132</td>
<td>73</td>
</tr>
<tr>
<td>Second metastasectomy</td>
<td>260</td>
<td>28</td>
<td>642</td>
<td>53</td>
<td>34</td>
<td>40</td>
<td>28</td>
<td>16</td>
</tr>
</tbody>
</table>

Isolated lung perfusion and related techniques for treatment of pulmonary metastases. Is survival really improved?

- survival data: the problem
- how to improve local control?
- phase II study of ILuP
- conclusions
Surgery for pulmonary metastases

Alternative treatments

Optimizing systemic + local control

- induction or adjuvant systemic chemotherapy
- alternative techniques: SRT, RFA
- chemoembolisation
- isolated lung perfusion (high local drug concentration)
- regional drug delivery (pulm. art. infusion)
Alternative techniques: chemo-embolisation

- chemo-embolisation with degradable starch microspheres + cytotoxic drugs (carboplatin) in a rat model
 - more effective than i.v. and $= ILuP$

 Schneider P. Clin Cancer Res 2002; 8:2463-8

- transpulmonary chemo-embolisation
 - 106 unresectable lung metastases in 52 pts
 - 5-10 mg mitomycin C + 5-10 ml iodized oil + microspheres
 - no complications, well tolerated
 - partial response in 16 pts., stable disease 11, progression 25
 - median survival 21 months

Isolated lung perfusion (ILuP)

Experimental animal studies

rat model ILuP

Weksler B. J Appl Physiol 1993; 74: 2736-9
phase II ILuP: method

- **lung isolation**
 - heparinisation
 - cannulation of pulm. artery and both veins
 - central clamping
 - snaring of main bronchus

- **centrifugal pump** and a closed circuit

- 45 mg melphalan at 37°C for 30 min followed by washout
 - alkylating agent
 - also used with isolated limb and liver perfusion
Isolated lung perfusion (ILuP)

den Hengst W. J Thorac Oncol 2014; 9:1547-53
Isolated lung perfusion and related techniques for treatment of pulmonary metastases. Is survival really improved?

- survival data: the problem
- how to improve local control?
- phase II study of ILuP
- conclusions
phase II ILuP: procedure – follow-up

• phase II single arm, *resectable* lung mets colorectal cancer and sarcoma
• pulmonary metastasectomy with lymphadenectomy
• postoperative complications were scored using the extended Clavien-Dindo classification
• lung function was measured preoperatively and at 1, 3, 6, 9 and 12 mos
• follow-up CT scans to evaluate local and distant disease progression
phase II ILuP: patients

- 107 pts 136 procedures: Leiden, Rotterdam, Nieuwegein, NL
 Antwerp, B

n=57 n = 50

- 29 bilateral procedures
- ♂ 63 pts ♀ 44 pts
- mean age 51 years (range 19-78)
- mean DFI: 18 mos (range 0-168)
- median of 2 active mets on pathology (range: 0-17)
phase II ILuP: results

• Safety:
 – no perioperative mortality
 – 12 (8.8%) severe complications (grade III or higher)
 – recovery of lung function within 12 months

<table>
<thead>
<tr>
<th>Complication</th>
<th>Treatment</th>
<th>No. of pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade IIIa</td>
<td>Atelectasis</td>
<td>Bronchoscopy</td>
</tr>
<tr>
<td></td>
<td>Pneumonia</td>
<td>Bronchoscopy</td>
</tr>
<tr>
<td></td>
<td>Pneumothorax</td>
<td>New chest tube</td>
</tr>
<tr>
<td></td>
<td>Pleural effusion</td>
<td>New chest tube</td>
</tr>
<tr>
<td></td>
<td>Fibrotic lung</td>
<td>Pleural puncture, Diuretics</td>
</tr>
<tr>
<td>Grade IIIb</td>
<td>Postoperative bleeding</td>
<td>Reoperation</td>
</tr>
<tr>
<td></td>
<td>Chest tube sutured to skin</td>
<td>Reoperation</td>
</tr>
<tr>
<td>Grade IV</td>
<td>ARDS</td>
<td>ICU admission</td>
</tr>
<tr>
<td>Grade IVa</td>
<td>Peroperative anaphylactic shock</td>
<td>Fluids, medication, ICU admission postoperatively</td>
</tr>
</tbody>
</table>

Table 1: LUNG FUNCTION 12 MONTHS AFTER ILUP

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of preoperative value</td>
<td>% of preoperative value</td>
<td>% of preoperative value</td>
</tr>
<tr>
<td>FEV1</td>
<td>91.06</td>
<td>16.11</td>
</tr>
<tr>
<td>VC</td>
<td>91.72</td>
<td>14.16</td>
</tr>
<tr>
<td>TLC</td>
<td>91.14</td>
<td>13.78</td>
</tr>
<tr>
<td>DLCO</td>
<td>93.24</td>
<td>2.50</td>
</tr>
<tr>
<td>KCO</td>
<td>103.61</td>
<td>19.28</td>
</tr>
</tbody>
</table>

ILUP: Isolated lung perfusion; SD: Standard deviation; FEV1: Forced expiratory volume in 1 second; VC: Vital capacity; TLC: Total lung capacity; DLCO: Diffusing capacity; KCO: DLCO/VA
Table 3: SURVIVAL DATA ACCORDING TO TUMOR HISTOLOGY

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Median TTLPP(^1) (95% CI)</th>
<th>3-year PPFS</th>
<th>Median TTP(^1) (95% CI)</th>
<th>3-year DFS</th>
<th>MST(^1) (95% CI)</th>
<th>5-year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC</td>
<td>22 (10-34)</td>
<td>42 ± 7%</td>
<td>12 (7-17)</td>
<td>27 ± 6%</td>
<td>78 (35-121)</td>
<td>57 ± 9%</td>
</tr>
<tr>
<td>Sarcoma</td>
<td>NR</td>
<td>60 ± 8%</td>
<td>12 (7-18)</td>
<td>28 ± 7%</td>
<td>42 (29-55)</td>
<td>34 ± 8%</td>
</tr>
<tr>
<td>Overall</td>
<td>34 (4-64)</td>
<td>50 ± 5%</td>
<td>12 (9-15)</td>
<td>27 ± 4%</td>
<td>50 (36-64)</td>
<td>46 ± 5%</td>
</tr>
</tbody>
</table>

MST: median survival time; OS: overall survival; TTP: time to progression; TTLPP: time to local pulmonary progression; DFS: disease-free survival; CRC: colorectal carcinoma; NR: not reached

\(^1\) Time in months

Table 4: LOCATION OF FIRST RECURRENCE

<table>
<thead>
<tr>
<th>Location</th>
<th>No. of patients</th>
<th>% of total patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipsilateral lung</td>
<td>41</td>
<td>30</td>
<td>18</td>
<td>13</td>
<td>5</td>
<td>4</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Contralateral lung</td>
<td>18</td>
<td>13</td>
<td>5</td>
<td>4</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local (primary)</td>
<td>5</td>
<td>4</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple sites</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
phase II ILuP: results

Table 5: SURVIVAL DATA FOR SPREAD OF DISEASE ACCORDING TO TUMOR HISTOLOGY

<table>
<thead>
<tr>
<th></th>
<th>Median TTLPP¹ (95% CI)</th>
<th>3-year PPFS (95% CI)</th>
<th>Median TTP¹ (95% CI)</th>
<th>3-year DFS (95% CI)</th>
<th>MST¹ (95% CI)</th>
<th>5-year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td>NR</td>
<td>59 ± 10%</td>
<td>23 (0-83)</td>
<td>48 ± 10%</td>
<td>NR</td>
<td>73 ± 9%</td>
</tr>
<tr>
<td>Bilateral</td>
<td>18 (12-24)</td>
<td>26 ± 9%</td>
<td>11 (7-17)</td>
<td>7 ± 5%</td>
<td>51 (24-78)</td>
<td>34 ± 11%</td>
</tr>
<tr>
<td>Sarcoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td>NR</td>
<td>60 ± 10%</td>
<td>15 (7-24)</td>
<td>14 ± 9%</td>
<td>48 (38-58)</td>
<td>35 ± 15%</td>
</tr>
<tr>
<td>Bilateral</td>
<td>NR</td>
<td>60 ± 10%</td>
<td>10 (6-14)</td>
<td>35 ± 9%</td>
<td>38 (25-51)</td>
<td>32 ± 9%</td>
</tr>
</tbody>
</table>

¹ Time in months
TTLPP: time to local pulmonary progression; PPFS: pulmonary progression free survival; TTP: time to progression; DFS: disease free survival; MST: median survival time; OS: overall survival; HVC: high volume centre; LVC: Low volume centre; CRC: colorectal carcinoma

Literature:
- **CRC**
 - TTLPP: 12-19 mos
 - 3-year PPFS:
 - Unilateral: 55%
 - Bilateral: 12%
 - TTP: 12-52 mos
 - 3-year DFS: 44%
 - 1 study
 - 26% bilateral procedures
 - MST: 31-75 mos
 - 5-year OS: 34-68
- **Sarcoma**
 - TTLPP: 13-18 mos
 - 3-year PPFS: 44-45%
 - TTP: 7-8 mos
 - 3-year DFS: 25-26%
 - MST: 19-48 mos
 - 5-year OS: 22-53%
Isolated lung perfusion and related techniques for treatment of pulmonary metastases. Is survival really improved?

- survival data: the problem
- how to improve local control?
- phase II study of ILuP
- conclusions
phase II ILuP: conclusions

• **ILuP with melphalan** combined with metastasectomy is feasible and safe
 - no perioperative † - postoperative complications ≈ regular thoracic procedures
 - no long-term pulmonary toxicity

• compared to historical controls, ILuP with melphalan is beneficial in pts with colorectal and sarcoma tumours
 - ILuP better local control compared to retrospective literature data, especially in unilateral disease.
 - for sarcoma patients this local control markedly diminished general disease progression; long-term survival?

• further evaluation of **locoregional lung perfusion techniques** with other chemotherapeutic drugs and adjuvant IV therapy is warranted.
Alternative techniques: future prospects

Pulmonary artery infusion

- high-dose unilateral pulmonary chemotherapy (infusate)
- catheter-based pulmonary artery control in dog model
- 75% of tracer remained in lung after 30 min. dwell time

- blood flow occlusion in rat model with gemcitabine
- MTD 40 mg, lung saturated after 20 min
- ↓ plasma levels and ↑ lung levels compared with iv injection